Lois générales de l'Électromagnétisme

Conservation de la charge 1

Équation de conservation de la charge :

$$\overrightarrow{div} \overrightarrow{j} + \frac{\partial \rho}{\partial t} = 0 \qquad \text{avec} \qquad \overrightarrow{j} = \sum_{i} \rho_{m_i} \overrightarrow{v_i}, \quad \overrightarrow{v_i} = \text{vitesse de conduction}$$

$$\rho = \frac{dq}{d\tau} \text{ densit\'e volumique de charge}$$

Équations de Maxwell 2

Courant de déplacement

C'est le vecteur $\overrightarrow{j_D}$ donné par :

$$\overrightarrow{j_D} = \varepsilon_0 \frac{\partial \overrightarrow{E}}{\partial t}$$

Forme locale des équations de Maxwell

 $\begin{array}{ll} \text{Maxwell-Gauss}: \operatorname{div}\overrightarrow{E} = \frac{\rho}{\varepsilon_0} & \text{Maxwell-Thomson}: \operatorname{div}\overrightarrow{B} = 0 \\ \\ \text{Maxwell-Farraday}: \overrightarrow{\operatorname{rot}}\overrightarrow{E} = -\frac{\partial\overrightarrow{B}}{\partial t} & \text{Maxwell-Ampère}: \overrightarrow{\operatorname{rot}}\overrightarrow{B} = \mu_0\overrightarrow{j} + \frac{1}{c^2}\frac{\partial\overrightarrow{E}}{\partial t} \text{ avec } \varepsilon_0\mu_0c^2 = 1 \\ \end{array}$

Conséquences 2.3

 \overrightarrow{E} et \overrightarrow{B} sont créés par des charges et des courants. \overrightarrow{E} et \overrightarrow{B} sont couplés : \overrightarrow{B} variable dans le temps crée \overrightarrow{E} (induction), \overrightarrow{E} variable dans le temps crée \overrightarrow{B} (propagation d'ondes électromagnétique).

Forme intégrale des équations de Maxwell

Équation de Maxwell-Thomson (Conservation du flux)

$$\operatorname{div} \overrightarrow{B} = 0$$

 ${\rm div}\overrightarrow{B}=0$ Le flux $\iint_S\overrightarrow{B}\cdot\overrightarrow{dS}$ est conservé le long d'un tube de champ.

Théorème de Gauss

S une surface fermée orientée vers l'extérieur :

2.4.3Loi de Farraday

 \mathcal{C} un circuit fermé fixe (induction de Neuman) :

$$\oint_{\mathcal{C}} \overrightarrow{E} \cdot \overrightarrow{dl} = e = -\frac{d\phi}{dt}$$

On retrouve le cas de la statique : \overrightarrow{B} est constant donc $\oint_C \overrightarrow{E} \cdot \overrightarrow{dS} = 0$, \overrightarrow{E} est à circulation conservative.

2.4.4 Théorème d'Ampère (forme générale)

 $\mathcal C$ un circuit fermé

$$\oint_{\mathcal{C}} \overrightarrow{B} \cdot \overrightarrow{dl} = \mu_0 i_{\text{enl}} + \mu_0 \iint_{S} \overrightarrow{j_D} \cdot \overrightarrow{dS}$$

2.5 ARQS

On se situe dans l'Approximation des Régimes Quasi-Stationnaires si :

$$\|\overrightarrow{j_D}\| \ll \|\overrightarrow{j}\|$$
 ou $\|\frac{1}{c^2}\frac{\partial \overrightarrow{E}}{\partial t}\| \ll \mu_0\|\overrightarrow{j}\|$

Si on apelle T l'échelle temporelle de variation de \overrightarrow{E} , et E l'ordre de grandeur de \overrightarrow{E} , la condition d'ARQS est : $T \gg \frac{\varepsilon_0 E}{j}$

2.6 Équations de Maxwell dans l'ARQS

$$\begin{aligned} \operatorname{div} \overrightarrow{E} &= \frac{\rho}{\varepsilon_0} & \operatorname{div} \overrightarrow{B} &= 0 \\ \overrightarrow{\operatorname{rot}} \overrightarrow{E} &= -\frac{\partial \overrightarrow{B}}{\partial t} & \overrightarrow{\operatorname{rot}} \overrightarrow{B} &= \mu_0 \overrightarrow{j} \end{aligned}$$

2.7 Équations de Maxwell en statique

On remarque que \overrightarrow{E} et \overrightarrow{B} sont découplés.

2.8 Relations de passage à une interface

On considère une interface entre deux milieux constituant une distribution de charge (σ) et de courant $(\overrightarrow{j_S})$. Soient M_1 et M_2 deux points infiniment proches de la surface se faisant face, chacun placés d'un côté de l'interface. $\overrightarrow{n_{12}}$ un vecteur unitaire dirigé de 1 vers 2. On a :

$$\overrightarrow{E_2} - \overrightarrow{E_1} = \frac{\sigma}{\varepsilon_0} \overrightarrow{n_{12}} \qquad \overrightarrow{B_2} - \overrightarrow{B_1} = \mu_0 \overrightarrow{j_S} \wedge \overrightarrow{n_{12}} \quad \text{avec } \sigma = \int_{M_1}^{M_2} \rho(z) dz$$

- Le champ électrique normal et le champ magnétique tangentiel sont discontinus.
- Le champ électrique tangentiel et le champ magnétique normal sont continus.

3 Potentiels

3.1 Potentiel vecteur

On a toujours $\operatorname{div} \overrightarrow{B} = 0$, il existe donc \overrightarrow{A} tel que $\overrightarrow{B} = \operatorname{rot} \overrightarrow{A}$. \overrightarrow{A} s'apelle le potentiel vecteur.

3.2 Potentiel scalaire

 $\overrightarrow{E} + \frac{\partial \overrightarrow{A}}{\partial t}$ dérive d'un potentiel scalaire V tel que :

$$\overrightarrow{E} = -\overrightarrow{\text{grad}}V - \frac{\partial \overrightarrow{A}}{\partial t}$$

Remarque : les deux expressions définissent \overrightarrow{A} et V, et sont complètement équivalentes aux équations de Maxwell-Farraday et de Maxwell-Thomson.

3.3 Non-unicité

 \overrightarrow{A} n'est pas unique. Pour tout champ scalaire φ , $\overrightarrow{A'} = \overrightarrow{A} + \overrightarrow{\operatorname{grad}}\varphi$, $\overrightarrow{A'}$ est aussi un potentiel vecteur qui convient. De plus, $V' = V - \frac{\partial \varphi}{\partial t}$ est un potentiel scalaire qui convient aussi. On aura ainsi :

$$\overrightarrow{E} = -\overrightarrow{\operatorname{grad}}V' - \frac{\partial \overrightarrow{A'}}{\partial t}$$

On peut définir une jauge : c'est une relation entre \overrightarrow{A} et V restreignant le choix possible.

3.4 Equations de Poisson

En électrostatique : $\Delta V = -\frac{\rho}{\varepsilon_0}$

En magnétostatique (vrai aussi en ARQS) : $\Delta \overrightarrow{A} = -\mu_0 \overrightarrow{j}$

4 Énergie électromagnétique

4.1 Densité d'énergie

$$u = \frac{d\mathcal{E}}{d\tau} = \varepsilon_0 \frac{E^2}{2} + \frac{B^2}{2\mu_0}$$

4.2 Puissance cédée aux porteurs de charges

 $\mathcal V$ un volume de l'espace contenant des charges éventuellement mobiles, et dans lequel règne un champ électromagnétique $(\overrightarrow{E},\overrightarrow{B})$. La puissance volumique cédée aux porteurs de charges par le champ électromagnétique est :

$$\frac{d\mathcal{P}}{d\tau} = \overrightarrow{j} \cdot \overrightarrow{E}$$

Cas d'un conducteur ohmique : $\frac{d\mathcal{P}}{d\tau} = \overrightarrow{j} \cdot \overrightarrow{E}$, avec $\overrightarrow{j} = \gamma \overrightarrow{E}$ \Rightarrow $\frac{d\mathcal{P}}{d\tau} = \gamma E^2$ et $\mathcal{P} = Ri^2$ avec $R = \frac{\rho l}{S}$, i = jS.

Puissance joule volumique : $\frac{d\mathcal{P}_I}{d\tau} = \gamma E^2 = \frac{j^2}{\gamma}$

4.3 Vecteur de Poynting

C'est un vecteur $\overrightarrow{\pi} = \overrightarrow{\pi}(M,t)$ tel que $\overrightarrow{\pi} \cdot \overrightarrow{dS} =$ puissance électromagnétique traversant la surface \overrightarrow{dS} , $\forall \overrightarrow{dS}$ centré en M.

4.4 Bilan d'énergie

u l'énergie du système à t:

$$\underbrace{\overrightarrow{div}\overrightarrow{\pi}}_{\text{terme de flux}} + \frac{\partial u}{\partial t} = \underbrace{-\overrightarrow{j}.\overrightarrow{E}}_{\text{terme de création}}$$

4.5 Expression de $\overrightarrow{\pi}$

Une expression possible pour $\overrightarrow{\pi}$ est :

$$\overrightarrow{\pi} = \frac{\overrightarrow{E} \wedge \overrightarrow{B}}{\mu_0}$$

5 Effet de peau

5.1 Présentation du phénomène

Soit un conducteur ohmique de conductivité γ placé dans le demi-espace $z \geq 0$, entouré de vide. On crée un champ électrique tel que : $\overrightarrow{E}(z=0) = E_0 e^{j\omega t} \overrightarrow{u_y}$. Le calcul de \overrightarrow{E} dans le conducteur à partir des équations de Maxwell donne :

$$\overrightarrow{E} = E_0 e^{j(\omega t - \frac{z}{\delta})} e^{-\frac{z}{\delta}} \overrightarrow{u_y} \text{ avec } \delta = \sqrt{\frac{2}{\mu_0 \gamma \omega}}$$

Le champ n'a de valeur notable que sur une épaisseur δ (épaisseur de peau) de la surface du conducteur.

5.2 Cas d'un conducteur parfait

C'est un conducteur tel que $\gamma \to 0 \Rightarrow \delta \to 0$ donc le champ électrique est nul partout dans le conducteur. Le champ magnétique est nul dans les conducteur dont la taille vérifie $L \gg \delta$. Ici, $\delta \to 0$, il existe donc des charges et des courants surfaciques.